Publication announcement: Deep learning models for lipid-nanoparticle-based drug delivery.

We are happy to announce that our paper “Deep learning models for lipid-nanoparticle-based drug delivery” is now available ahead of print and open access in the journal Nanomedicine.

Authors: Harrison PJ, Wieslander H, Sabirsh A,  Karlsson J, Malmsjö V, Hellander A, Wählby C & Spjuth O.

DOI: 10.2217/nnm-2020-0461

Abstract:
Background: Early prediction of time-lapse microscopy experiments enables intelligent data management and decision-making. Aim: Using time-lapse data of HepG2 cells exposed to lipid nanoparticles loaded with mRNA for expression of GFP, the authors hypothesized that it is possible to predict in advance whether a cell will express GFP. Methods: The first modeling approach used a convolutional neural network extracting per-cell features at early time points. These features were then combined and explored using either a long short-term memory network (approach 2) or time series feature extraction and gradient boosting machines (approach 3). Results: Accounting for the temporal dynamics significantly improved performance. Conclusion: The results highlight the benefit of accounting for temporal dynamics when studying drug delivery using high-content imaging.

In the figure below we show a schematic for the modelling approach used in the paper that combined convolutional and recurrent neural networks (long short-term memory, LSTM). This model is used for predicting information only present in the GFP channel at the end of the experiment from other imaging channels captured during the early time points of the experiment, prior to any GFP expression.

Leave a Reply

Your email address will not be published.