HASTE project meeting over zoom.

Unfortunately, we didn’t get a chance to enjoy the good food and beautiful environment of the Noor Castle, but we had a productive project meeting anyway. The meeting started with report reading and Salman Toor presenting his docent lecture “Distributed Computing e-Infrastructures (DCI): Challenges and Opportunities for Application Experts and Service Providers”. This was followed by intense brainstorming on the continued research in the project, and a discussion on the almost complete half-time report, and planning for the coming Tuesday seminars, which have become an important part of the project communication now that most of us work from home.

HASTE meeting over Zoom

Ankit Gupta joins HASTE team as PhD student

We welcome Ankit Gupta as new PhD Student in the Wählby Lab at the Department of Information Technology, Uppsala University.

Ankit obtained his Bachelor’s in Electrical Engineering at Indian Institute of Technology Indore in 2014. Then, he completed his Masters in Medical Imaging and Informatics at Indian Institute of Technology Kharagpur in 2017. Before moving to Uppsala, he was employed as Research Engineer at the University of Bern where he worked on developing a video-based instrument tracking system in stereoscopic laparoscopic surgery.

About the PhD project within HASTE:  

Within the project, he will work on developing measurements for the early detection of informative data from large-scale spatial and temporal experiments.

Håkan Wieslander starts a PhD position

We are happy to welcome Håkan Wieslander to the team and to PhD education at the department of Information Technology, Uppsala University!

Håkan grew up in Lund, Sweden and moved to Uppsala 2011 to study Engineering Physics. In 2017 he obtained a masters degree in computational science. The MSc thesis was about classification of malignant cells using deep learning. 

About the PhD project within HASTE:  

Collection of large amounts of data often results in high-quality, highly informative data intermixed with data that is either of poor quality or of little interest in relation to the question at hand. Wieslander’s thesis work will focus on development of computationally inexpensive measurements that will identify non-informative data early on in the analysis process; either online at data collection, or off-line prior to full data analysis. The challenge is to use minimal computational time and power to extract a broad range of informative measurements from spatial-, temporal-, and multi-parametric image data, useful as input for conformal predictions and efficient enough to work well in a streaming setting.